Macaulay2 » Documentation
Packages » ThinSincereQuivers » isTight
next | previous | forward | backward | up | index | toc

isTight -- determine if toric quiver is tight

Description

A toric quiver $Q$ is tight with respect to a given flow if there is no maximal unstable subquiver of codimension 1. That is, every unstable subquiver of $Q$ has at most $|Q_1|-2$ arrows. This method determines if a toric quiver $Q$ is tight with respect to the vertex weights induced by its flow.

i1 : isTight bipartiteQuiver(2, 3)

o1 = true
i2 : isTight bipartiteQuiver(2, 3, Flow => "Random")

o2 = false
i3 : isTight (bipartiteQuiver(2, 3), {2,1,2,3,2,3})

o3 = true
i4 : isTight ({0,0,0,0,0,1}, bipartiteQuiver(2, 3))

o4 = false

Ways to use isTight:

  • isTight(List,ToricQuiver)
  • isTight(ToricQuiver)
  • isTight(ToricQuiver,List)

For the programmer

The object isTight is a method function with options.


The source of this document is in /build/reproducible-path/macaulay2-1.25.06+ds/M2/Macaulay2/packages/ThinSincereQuivers.m2:3279:0.