makePfisterForm(k, a)
makePfisterForm(k, L)
Given a sequence of elements $a_1,\ldots,a_n \in k$ we can form the Pfister form $\langle\langle a_1,\ldots,a_n\rangle\rangle$ defined to be the rank $2^n$ form defined as the product $\langle 1, -a_1\rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$.
|
Inputting a ring element, an integer, or a rational instead of a sequence will produce a one-fold Pfister form instead. For instance:
|
|
The object makePfisterForm is a method function.
The source of this document is in /build/reproducible-path/macaulay2-1.25.06+ds/M2/Macaulay2/packages/A1BrouwerDegrees/Documentation/BuildingFormsDoc.m2:50:0.