Macaulay2 » Documentation
Packages » Triplets :: chiPol(RingElement,ZZ,List,List)
next | previous | forward | backward | up | index | toc

chiPol(RingElement,ZZ,List,List) -- Hilbert polynomial of cohomology sheaves

Description

Computes the Hilbert polynomial of the -p'th cohomology sheaf of the complex of coherent sheaves associated to a homology triplet
i1 : QQ[d]

o1 = QQ[d]

o1 : PolynomialRing
i2 : T = triplet({1,2,3}, {1,3}, {0,2,3})  

o2 = {{1, 2, 3}, {1, 3}, {0, 2, 3}}

o2 : Triplet
i3 : chiPol(d,0,{T#0,T#1},hilbCoeff(T))

o3 = d

o3 : QQ[d]
i4 : chiPol(d,1,{T#0,T#1},hilbCoeff(T))

     1 3   1 2   1
o4 = -d  + -d  + -d
     6     2     3

o4 : QQ[d]

See also

Ways to use this method:


The source of this document is in /build/reproducible-path/macaulay2-1.25.06+ds/M2/Macaulay2/packages/Triplets.m2:1126:0.